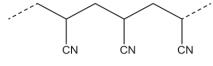
Alkenes (MCQ)

- 1. What is the best description for the bonding between the carbon atoms in an ethene molecule?
 - **A** One σ -bond and one π -bond
 - ${\bm B} \quad \text{One } \pi\text{-bond}$
 - ${\bm C} \quad {\sf Two} \ \sigma{\sf -bonds}$
 - $\textbf{D} \quad \text{Two π-bonds}$

Your answer


[1]

- 2. Which statement about an electrophile is correct?
 - A It is an electron pair acceptor.
 - B It is a proton donor.
 - **C** It is a negative ion.
 - **D** It is a species with an unpaired electron.

Your answer

[1]

3. A section of a polymer is shown below.

Which monomer could form this polymer?

- A CH₃CH(OH)CN
- B HOCH₂CH₂CN
- C H₂C=CHCN
- D NCCH=CHCN

Your answer

[1]

4. A student reacts pent-2-ene with bromine in the laboratory.

Which compound is formed?

- A 1,1-dibromopentane
- **B** 1,2-dibromopentane
- C 2,2-dibromopentane
- **D** 2,3-dibromopentane

Your answer			[1]

5. The molecule below has two double bonds, labelled 1 and 2.

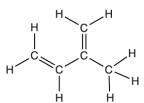
~ 2

The arrangement around each double bond can be identified as *E* or *Z*.

Which row in the table is correct for double bond **1** and double bond **2**?

	Double bond 1	Double bond 2
Α	E	Z
В	Z	E
С	E	E
D	Z	Z

Your answer


[1]

- 6. Which alcohol reacts with an acid catalyst to form *E* and *Z* stereoisomers?
 - A pentan-3-ol
 - B pentan-1-ol
 - C 2-methylbutan-2-ol
 - D 2,2-dimethylpropan-1-ol

Your answer	

[1]

7. The displayed formula for a hydrocarbon is shown below.

How many σ and π bonds are present in a molecule of this hydrocarbon?

	σ bonds	π bonds
Α	2	4
В	10	2
С	10	4
D	12	2

Your answer

[1]

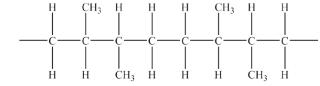
8. A reaction sequence is shown below:

Step 1	CH₃CH=CHCH₃ + HBr	\rightarrow	CH ₃ CH ₂ CHBrCH ₃
Step 2	CH ₃ CH ₂ CHBrCH ₃ + NaOH	\rightarrow	CH ₃ CH ₂ CH(OH)CH ₃ + NaBr

Which type of reaction mechanism is involved in each step?

	Step 1	Step 2
Α	electrophilic addition	electrophilic substitution
В	electrophilic addition	nucleophilic substitution
С	nucleophilic addition	electrophilic substitution
D	nucleophilic addition	nucleophilic substitution

Your answer

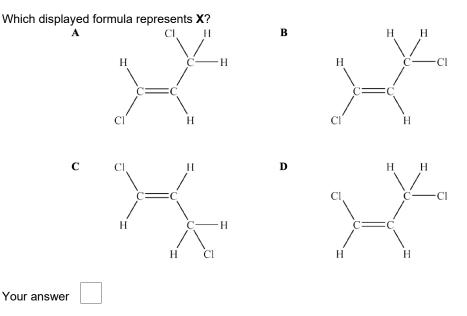

[1]

- 9. Which compound has non-polar molecules?
 - A E-1,2-dichlorobut-2-ene
 - **B** *E*-2,3-dichlorobut-2-ene
 - C Z-2,3-dichlorobut-2-ene
 - D Z-1,4-dichlorobut-2-ene

Your answer

[1]

10. A section of a polymer chain is shown below.



Identify the monomer that would give rise to this section of addition polymer.

A. *E*-But-2-ene B. *Z*-But-2-ene C. Methylpropene D. Propene Your answer

[1]

11. Three of the following displayed formulae represent the same isomer of $C_3H_4Cl_2$ but one structure represents a different isomer, **X**.

[1]

END OF QUESTION PAPER

Mark scheme – Alkenes (MCQ)

Q	Question		Answer/Indicative content	Marks	Guidance
1			A	1 (AO1.1)	Examiner's Comments Candidates answered this question well with over two-thirds choosing the correct option A. Option D was the most common incorrect response suggesting that candidates are uncertain about the nature of a C=C double bond.
			Total	1	
2			Α	1 (AO1.1)	
			Total	1	
3			c	1 (AO1.2)	Examiner's Comments This part discriminated well. Although most candidates did select C as the correct structure, many were diverted into selecting option D, the other alternative containing a double C=C bond. In identifying a monomer for an addition polymer, candidates are advised to identify the repeat unit and then to replace the single C–C bond with a double bond to give the monomer.
			Total	1	
4			D	1	Examiner's Comments Most candidates chose the correct option of D but a sizeable number chose B and C, the other options containing a '2' in their names. The best strategy here is to draw out the carbon skeleton of pent-2-ene from which it is clear that bromine atoms must be added at carbon positions 2 and 3.
			Total	1	
5			c	1	Examiner's Comments This was a difficult question but higher ability candidates selected the correct option of C. The main discriminator was B, which identifies the 1 double bond as <i>Z</i> . CIP analysis is required to show that the double bond is <i>E</i> . This is a good 'hard' example for illustrating <i>E</i> / <i>Z</i> isomerism.

		Total	1	
6		A	1	Examiner's Comments Candidates found this question challenging, with only the more able candidates obtaining the correct alcohol. Answer option C was a common incorrect answer.
		Total	1	
7		D	1	Examiner's Comments B was a common incorrect answer with the sigma bond not counted as part of a double bond.
		Total	1	
8		В	1	Examiner's Comments Generally scored well.
		Total	1	
9		В	1	Examiner's Comments Candidates struggled with this very different polarity question. The majority of candidates are clearly used to applying symmetry to much simpler molecules.
		Total	1	
10		D	1	
		Total	1	
11		D	1	
		Total	1	